Active Learning Optimizer Factory
Source:R/optimizer_active_learning.R
optimizer_active_learning.RdConvenience constructor that wires together an mlr3mbo::OptimizerMbo for active learning with an uncertainty-based acquisition function (SD) and optional multipoint (batch) proposal via BatchProposer batch strategies.
Arguments
- learner
(mlr3::LearnerRegr)
Base regression learner used as the surrogate.- se_method
(
character(1))
How to obtain standard errors:"auto": use native"se"if supported bylearner, otherwise"bootstrap"."bootstrap": wrap via LearnerRegrBootstrapSE."quantile": wrap via LearnerRegrQuantileSE (requires"quantiles"support).
- se_method_n_bootstrap
(
integer(1))
Number of bootstrap replicates for"bootstrap". Ignored otherwise.- batch_size
(
integer(1))
Number of points proposed per MBO iteration.- multipoint_method
(
character(1))
Batch selection strategy:"greedy": top-k by acquisition score (equivalent ton_candidates = batch_size)"local_penalization": local penalization based diversity"diversity": score/diversity trade-off"constant_liar": uses mlr3mbo::bayesopt_mpcl (constant liar loop)
- aqf_optimizer
(bbotk::Optimizer | mlr3mbo::AcqOptimizer)
Acquisition optimization backend. If an bbotk::Optimizer is provided, it is wrapped into a BatchProposer. Default isopt("pool").- aqf_evals
(
integer(1))
Evaluation budget for acquisition optimization (TerminatorEvals$n_evals).
Value
Configured mlr3mbo::OptimizerMbo.
Details
This helper focuses on the common active learning setup in this project:
uses an SD acquisition function (mlr3mbo::AcqFunctionSD)
uses a surrogate that can provide standard errors (either native
"se", LearnerRegrBootstrapSE, or LearnerRegrQuantileSE)disables assigning a "best" point via ResultAssignerNull (required for codomains tagged with
"learn")