Skip to contents

Package

celecx celecx-package
celecx: Computer Experiment LEarning Curve eXtrapolation

Active Learning

Main entry points for running active learning experiments.

optimize_active()
Run Active Learning
optimizer_active_learning()
Active Learning Optimizer Factory

Search Instance

Instance classes for managing active learning runs.

SearchInstance
Search Instance
search_instance()
Create Search Instance
ContextSearch
Context for Search Instance
search_terminated_error()
Search Terminated Error

Objectives

Objective functions for computer experiments.

ObjectiveDataset
Objective Function Based on Pre-evaluated Dataset
ObjectiveLearner
Objective Function Based on a Fitted Learner

Surrogate Learners

Learners with uncertainty quantification for active learning.

mlr_learners_regr.bootstrap_se LearnerRegrBootstrapSE
Bootstrap Ensemble Learner with SE Prediction
mlr_learners_regr.quantile_se LearnerRegrQuantileSE
Quantile Regression Learner with SE Prediction

Batch Selection

Strategies for selecting multiple points per iteration.

BatchProposer
Batch Proposer
batch_strategies
Batch Selection Strategies
batch_strategy_diversity()
Diversity Batch Strategy
batch_strategy_greedy()
Greedy Batch Strategy
batch_strategy_local_penalization()
Local Penalization Batch Strategy

Candidate Generators

Methods for generating candidate points in pool-based optimization.

candidate_generators
Candidate Point Generators
candidate_generator_grid()
Grid Candidate Generator
candidate_generator_lhs()
LHS Candidate Generator
candidate_generator_local()
Local Candidate Generator
candidate_generator_mixed()
Mixed Candidate Generator
candidate_generator_random()
Random Candidate Generator
candidate_generator_sobol()
Sobol Candidate Generator

Optimizers

Acquisition function optimizers.

mlr_optimizers_pool OptimizerPool
Pool-Based Optimizer

Metrics Tracking

Track and record metrics during active learning.

MetricsTracker
Metrics Tracker
metrics_tracker()
Create Metrics Tracker
celecx.metrics_tracker CallbackMetricsTracker
Metrics Tracker Callback
search_metrics
Search Metrics
metric_best_y()
Best Y Metric
metric_integrated_variance()
Integrated Variance Metric
metric_max_variance()
Maximum Variance Metric
metric_mean_variance()
Mean Variance Metric
metric_model_mae()
Model MAE Metric
metric_model_r2()
Model R-squared Metric
metric_model_rmse()
Model RMSE Metric
metric_regret()
Regret Metric
metric_simple_regret()
Simple Regret Metric
metric_worst_y()
Worst Y Metric
make_metric()
Make Metric Function

Codomain Helpers

Utilities for working with objective codomains.

codomain_goal()
Determine Goal from Codomain
codomain_has_learn()
Check if Codomain Has Learning Targets
codomain_has_optimize()
Check if Codomain Has Optimization Targets
codomain_helpers
Codomain Helpers for Active Learning
codomain_learn_ids()
Get Learning Target IDs
codomain_optimize_ids()
Get Optimization Target IDs
codomain_target_ids()
Get Target IDs from Codomain

Base Classes

Abstract base classes and utilities.

ConfigurableComponent
ConfigurableComponent
ResultAssignerNull
Null Result Assigner
hash_transform()
Create Hash Digest of an Object