Implementation of CFI using modular sampling approach
References
Blesch K, Koenen N, Kapar J, Golchian P, Burk L, Loecher M, Wright M (2025). “Conditional Feature Importance with Generative Modeling Using Adversarial Random Forests.” Proceedings of the AAAI Conference on Artificial Intelligence, 39(15), 15596–15604. doi:10.1609/aaai.v39i15.33712 .
Super classes
xplainfi::FeatureImportanceMethod -> xplainfi::PerturbationImportance -> CFI
Methods
Method new()
Creates a new instance of the CFI class
Usage
CFI$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
groups = NULL,
relation = "difference",
n_repeats = 1L,
batch_size = NULL,
sampler = NULL
)Arguments
task, learner, measure, resampling, features, groups, relation, n_repeats, batch_sizePassed to PerturbationImportance.
sampler(ConditionalSampler) Optional custom sampler. Defaults to instantiating
ConditionalARFSamplerinternally with default parameters.
Method compute()
Compute CFI scores
Usage
CFI$compute(
n_repeats = NULL,
batch_size = NULL,
store_models = TRUE,
store_backends = TRUE
)Arguments
n_repeats(
integer(1)) Number of permutation iterations. IfNULL, uses stored value.batch_size(
integer(1)|NULL:NULL) Maximum number of rows to predict at once. IfNULL, uses stored value.store_models, store_backends(
logical(1):TRUE) Whether to store fitted models / data backends, passed to mlr3::resample internally for the initial fit of the learner. This may be required for certain measures and is recommended to leave enabled unless really necessary.
Examples
library(mlr3)
library(mlr3learners)
task <- sim_dgp_correlated(n = 500)
# Using default ConditionalARFSampler
cfi <- CFI$new(
task = task,
learner = lrn("regr.ranger", num.trees = 10),
measure = msr("regr.mse")
)
#> ℹ No `sampler` provided, using <ConditionalARFSampler> with default settings.
#> ℹ No <Resampling> provided, using `resampling = rsmp("holdout", ratio = 2/3)`
#> (test set size: 167)
cfi$compute()
cfi$importance()
#> Key: <feature>
#> feature importance
#> <char> <num>
#> 1: x1 2.985885240
#> 2: x2 0.171542034
#> 3: x3 1.525342471
#> 4: x4 0.005701918